Increased Plasma Caspase-3 in Children with Down Syndrome is Associated with an Increasing Risk of Pulmonary Hypertension
DOI:
https://doi.org/10.26911/thejmch.2023.08.01.03Abstract
Background: Pulmonary hypertension (PH) is the one of the comorbidities in children with Down syndrome. The pathogenesis of this pulmonary hypertension remains to be investigated, although endothelial dysfunction and apoptotic activity are among the proposed mechanisms. Caspase-3 is a key regulator of apoptosis and appears to be an attractive predictor of pulmonary hypertension in children with Down syndrome.
Subjects and Method: A cross-sectional observational clinical study was performed in Dr. Moewardi General Hospital in Surakarta-Indonesia between January and March 2021 involving clinically diagnosed children with Down syndrome. Sampling method was using a consecutive sampling. The independent variable was plasma caspase-3 level and the dependent variable were the presence of pulmonary hypertension and congenital heart defects (CHD). Clinical data documentation, blood collection and echocardiography were performed on enrollment day. We first determined the plasma level of caspase-3 in 36 children with Down syndrome and CHD (n=18) or without CHD (n=18) and further determined the risk of having pulmonary hypertension using the plasma caspase-3 level. We also determined the biomarker performance of caspase-3 using a receiver-operating characteristic (ROC) analysis
Results: Children with Down syndrome with PH had a higher plasma caspase-3 compared to those without PH (p<0.001). In those with both CHD and PH, the plasma caspase-3 level was also high although not statistically significant (p=0.145). The highest plasma caspase-3 level was observed in subjects with PH without CHD (p<0.01). Relative risk and ROC analysis demonstrated that increased plasma caspase-3 level increased the risk to have PH 5 times (RR=5.00, 95% CI 1.74 to 14.34; p<0.001) and predicted the incidence of PH in children with Down syndrome (AUC 0.88, CI 0.76 to 0.99).
Conclusion: An elevation in plasma caspase-3 level of Down syndrome children is associated with the increasing risk of having PH regardless the presence of CHD.
Keywords: pulmonary hypertension; down syndrome; caspase-3; pathogenesis; apoptosis.
Correspondence: Damayanti Ika Prasanti. Department of Pediatrics, Faculty of Medicine, Universitas Sebelas Maret / Dr. Moewardi General Hospital. Jl. Kolonel Sutarto 132, Surakarta 57126, Indonesia. Email: damayanti_ip@yahoo.com. Mobile: 081215683462.
References
Aoki M, Nata T, Morishita R, Matsushita H, Nakagami H, Yamamoto K, et al. (2001). Endothelial apoptosis induced by oxidative stress through activation of NF-KappaB: Antiapoptotic effect of antioxidant agents on endothelial cells. Hypertension. 38(1):48-55. doi: 10.1161/01.hyp.38.1.48
Bloemers BL, Van Bleek GM, Kimpen JL,Bont L (2010). Distinct abnormalities in the innate immune system of children with down syndrome. J Pediatr. 156(5):804-9, 809.e1-809.e5. doi:10.1016/j.jpeds.2009.12.006
Bush D, Galambos C, Dunbar Ivy D (2020). Pulmonary hypertension in children with down syndrome. Pediatric pulmonology. doi:10.1002/ppul.24687
Bush D, Galambos C, Ivy DD, Abman SH, Wolter-Warmerdam K, Hickey F (2018). Clinical characteristics and risk factors for developing pulmonary hypertension in children with down syndrome. J Pediatr. 202:212-219.e2. doi:10.1016/j.jpeds.2018.06.031
Chan CKV, Vanhoutte P.M (2013). Hypoxia, vascular smooth muscles and endothelium. Act Pharm Sin B. 3(1):1-7. doi: https://doi.org/10.1016/j.apsb.2012.12.007
Cronk C, Crocker AC, Pueschel SM, Shea AM, Zackai E, Pickens G, et al. (1988). Growth charts for children with down syndrome: 1 month to 18 years of age. Pediatrics. 81(1):102-10.
Cullen SP, Martin SJ (2009). Caspase activation pathways: Some recent progress. Cell Death & Differentiation. 16(7):935-938. doi: 10.1038/cdd.200-9.59
Dimmeler S, Zeiher AM (1999). Nitric oxidean endothelial cell survival factor. Cell Death Differ. 6(10):964-8. doi: 10.1038/sj.cdd.4400581
Espinola-Zavaleta N, Soto ME, Romero-Gonzalez A, Gómez-Puente Ldel C, Muñoz-Castellanos L, Gopal AS, et al. (2015). Prevalence of congenital heart disease and pulmonary hypertension in down's syndrome: An echocardio-graphic study. J Cardiovasc Ultrasound. 23(2):72-7. doi:10.4250/jcu-.2015.23.2.72
Happé CM, Szulcek R, Rol N, De Raaf MA, Schalij I, Vonk-Noordegraaf A, et al. (2015). Caspase inhibition stabilizes progressive vascular remodeling in established pulmonary hypertension. Eur Resp J. 46(suppl 59). doi:10.1-183/13993003.congress-2015.
Hawkins A, Langton-Hewer S, Henderson J, Tulloh RM (2011). Management of pulmonary hypertension in down syndrome. Eur J Ped. 170(7):915-921. doi:10.1007/s0043101013781
Jiang HK, Qiu GR, Li-Ling J, Xin N, Sun KL (2010). Reduced ACTC1 expression might play a role in the onset of congenital heart disease by inducing cardiomyocyte apoptosis. Circ J. 74(11): 24108. doi:10.1253/circj.cj100234
Lau EMT, Giannoulatou E, Celermajer DS, Humbert M (2017). Epidemiology and treatment of pulmonary arterial hypertension. Nat Rev Cardiol. 14(10):603-614.doi:10.1038/nrcardio.2017.84
Lévy M, Maurey C, Celermajer DS, Vouhé PR, Danel C, Bonnet D, et al. (2007). Impaired apoptosis of pulmonary endothelial cells is associated with intimal proliferation and irreversibility of pulmonary hypertension in congenital heart disease. J Am Coll Cardiol. 49 (7): 803-10. doi:10.1016/j.jacc.2006.09.049
Lorente L, Martín MM, Ferreres J, Solé-Violán J, Labarta L, Díaz C, et al. (2016). Serum caspase 3 levels are associated with early mortality in severe septic patients. J Crit Care. 34:103-6. doi:10.1016/j.jcrc.2016.04.008
Matsuda N, Takano Y, Kageyama S, Hatakeyama N, Shakunaga K, Kitajima I, et al. (2007). Silencing of caspase8 and caspase-3 by RNA interference prevents vascular endothelial cell injury in mice with endotoxic shock. Cardiovasc Res. 76(1):132-40. doi:10.1016/j.cardiores.2007.05.024
Matulevicius S, Rohatgi A, Khera A, Das SR, Owens A, Ayers CR, et al. (2008). The association between plasma caspase-3, atherosclerosis, and vascular function in the dallas heart study. Apoptosis. 13(10):1281-9.doi:10.1007/s1049500802541
Mcdowell KM, Craven DI (2011). Pulmonary complications of down syndrome during childhood. J Pediatr. 158(2):319-25. doi:10.1016/j.jpeds.2010.07.023
Naumburg E, Söderström L, Huber D, Axelsson I (2017). Risk factors for pulmonary arterial hypertension in children and young adults. Pediatr Pulmonol. 52(5):636-641. doi:10.1002/ppul.23633
Pascall E, Tulloh RM (2018). Pulmonary hypertension in congenital heart disease. Future Cardiol. 14(4):343-353. doi:10.2217/fca20170065
Petrache I, Fijalkowska I, Medler TR, Skirball J, Cruz P, Zhen L, et al. (2006). Alpha1 antitrypsin inhibits caspase-3 activity, preventing lung endothelial cell apoptosis. The Am J Pathol. 169 (4):1155-66. doi:10.2353/ajpath.2006.060058
Rueda N, Flórez J, Martínez-Cué C (2013). Apoptosis in down’s syndrome: Lessons from studies of human and mouse models. Apoptosis. 18(2):121-134. doi: 10.1007/s1049501207853
Saji T (2014). Clinical characteristics of pulmonary arterial hypertension associated with down syndrome. Pediatr Int. 56(3):297-303. doi:10.1111/ped.12349
Sakao S, Taraseviciene-Stewart L, Lee JD, Wood K, Cool CD, Voelkel NF (2005). Initial apoptosis is followed by increased proliferation of apoptosis-resistant endothelial cells. Faseb j. 19(9):1178-80. doi:10.1096/fj.043261fje
Sakao S, Tatsumi K, Voelkel NF (2009). Endothelial cells and pulmonary arterial hypertension: Apoptosis, proliferation, interaction and transdifferentiation. Respir Res. 10(1):95. doi: 10.1186/146599211095
Shioiri T, Muroi M, Hatao F, Nishida M, Ogawa T, Mimura Y, et al. (2009). Caspase-3 is activated and rapidly released from human umbilical vein endothelial cells in response to lipopolysaccharide. Biochim Biophys Acta. 1792(10):10118. doi:10.1016/j.bbadis.2009.06.006
Stadelmann C, Deckwerth TL, Srinivasan A, Bancher C, Brück W, Jellinger K, et al. (1999). Activation of caspase-3 in single neurons and autophagic granules of granulovacuolar degeneration in alzheimer's disease. Evidence for apoptotic cell death. Am J Pathol. 155(5):1459-66. doi: 10.1016/s00029440(10)654600
Van Der Feen DE, Bartelds B, De Boer RA, Berger RMF (2017). Pulmonary arterial hypertension in congenital heart disease: Translational opportunities to study the reversibility of pulmonary vascular disease. Eur Heart J. 38(26): 2034-2041. doi: 10.1093/eurheartj/ehx034
Verstegen RH, Van Gameren-Oosterom HB, Fekkes M, Dusseldorp E, De Vries E, Van Wouwe JP (2013). Significant impact of recurrent respiratory tract infections in children with down syndrome. Child Care Health Dev. 39(6): 801-9. doi:10.1111/j.13652214.2012.01413.x
White K, Dempsie Y, Caruso P, Wallace E, Mcdonald RA, Stevens H, et al. (2014). Endothelial apoptosis in pulmonary hypertension is controlled by a microrna/programmed cell death 4/caspase-3 axis. Hypertension. 64(1):185-94. doi:10.1161/hypertensionaha.113.03037
Yu JQ, Liu XF, Chin LK, Liu AQ, Luo KQ (2013). Study of endothelial cell apoptosis using fluorescence resonance energy transfer (fret) biosensor cell line with hemodynamic microfluidic chip system. Lab Chip. 13(14):2693-700. doi:10.1039/c3lc50105a